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ABSTRACT

Detecting activated regions in the human brain by cognitive tasks is
a significant task in the data analysis using functional MRI (FMRI).
To create a detection statistic for activation, noise models under two
assumptions; 1) spatial independence and 2) space-time separability
have been dominantly used in the FMRI data analysis. In this paper,
we propose a novel detection statistic derived from noise models
with spatiotemporal correlation and without space-time separability.
In order to obtain a sufficiently flexible class of noise models for non-
separable space-time processes, an unusual noise modeling based on
truncated cepstrum expansion is suggested. Developed methods are
applied to a human dataset.

Index Terms— Functional MRI, activation detection, non-
separable space-time noise models, spatiotemporal correlation, and
the parametric cepstrum

1. INTRODUCTION

The advent of brain imaging techniques allows researchers in many
fields to study the healthy and living human subject while the subject
is performing cognitive tasks without the need for surgery. Among
non-invasive techniques, FMRI is probably one of the most popular
tool to analyze and visualize the brain activity and a vast amount
of statistical methods for FMRI data analysis have been proposed.
These can be categorized into two groups; univoxel methods mainly
based on classical time series analysis and multivoxel methods based
on multivariate analysis, e.g., principal component analysis (PCA)
and independent component analysis (ICA).

With rare exceptions, most previous methods have been based
on two main assumptions on noise processes in the human brain;
spatial independence and space-time separability. In the activation
study, assuming space-time separability implies that pure spatial and
pure temporal operations can be separately and sequentially done
to properly detect activations in the brain induced by given stimuli.
For example in SPM, spatial smoothing by Gaussian kernel (pure
spatial operation) and GLM (involving pure temporal operation) are
performed sequentially to construct a detection statistic such as t-
statistic or F -statistic. [1] is an exception in previous approaches.
However, [1] suggested heavily constrained noise models combining
temporal AR(p) and spatial AR(1) processes and did not provided a
detection statistic for activation from those noise models.

We recently developed a detection statistic from noise models
fully considering spatial and temporal correlations under a space-
time separability assumption [2]. By extending [2], we develop a
detection statistic from non-separable space-time noise models in
this paper. The detection statistic provided in [2] is a special case
of the one developed in this paper.

2. FMRI MEASUREMENT MODEL

We consider a real-valued measurement model that has the following
additive form at a time t and a voxel v:

yt,v = dt,v + st,v + wt,v, (1)

where dt,v models nuisance signal component, e.g., slowly varying
temporal drift. It is found that linear drift is reasonably adequate [3].
st,v that is signal of our main interest denotes the blood oxygenation
level dependent (BOLD) response induced by given stimuli. wt,v is
non-separable random noise that is spatiotemporally correlated and
stationary. This noise has several sources; 1) MR scanner and 2)
background processes from physiologically unknown origins in the
brain. The noise from 1) is modeled as a white process and the
noise from 2) can be modeled as a spatiotemporal colored process.
For integer-valued t and v, we assume that yt,v is observed from a
rectangle, {0, . . . , T − 1} × {0, . . . , M − 1}. More details about
the signal and noise models are now discussed.

2.1. Signal Model Formulation

The BOLD response can be linearly modeled as follows:

st,v = hT
t fv ∗ ct � ξT

t fv, (2)

where ht � [h1,t, . . . , hL,t]
T

is a set of basis functions and fv �
[f1,v, . . . , fL,v]T is the associated activation amplitude. The given
stimulus is denoted as ct and L is the number of basis functions for
the BOLD response modeling. (2) covers various modelings of the
BOLD response; the parametric modeling with the canonical hemo-
dynamic response function, FIR modeling, and Laguerre modeling
[4]. The choice of basis functions is crucial for a good modeling
of the BOLD response with a small amount of computations. The
FIR modeling typically requires a high order FIR filter, whereas the
Laguerre polynomials provide a compact and exact modeling of the
BOLD response [4].

2.2. Noise Model Formulation

For modeling the non-separable and spatiotemporally colored noise
wt,v in (1), we need a class of noise models that is flexible enough
to handle such processes interesting in FMRI. Our approach to noise
modeling is based on a cepstrum expansion, called the parametric
cepstrum, which allows several advantages over classical AR-based
methods [5]. For example, the parametric cepstrum covers a wide
range of non-separable spatiotemporal processes and requires nearly
linear model fitting by FFTs [2, 5]. However, 2D or 3D AR-based
methods require highly nonlinear model fitting, as a matter of fact,
computationally prohibitive.
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The parametric cepstrum can be defined by truncating a Fourier
series expansion of the logarithm of power spectral density (PSD).
For ωk � 2πk/T and λl � 2πl/M ,

log Fk,l =

nX
t=−n

pX
v=−p

θt,ve−j(ωkt+λlv), (3)

where Fk,l is PSD and (n, p) denotes noise model orders. θt,v’s are
called cepstral coefficients. Thus the parametric cepstrum allows a
parametric modeling of PSD. Details of noise model fitting with the
parametric cepstrum are not given in this paper due to space limit.
The reader who is interested in more details is referred to [5] and [6,
Chap.4].

2.3. Measurement Model Reformulation

From (2) and (3), we have the following fully parameterized formu-
lation for FMRI measurement:

yt,v = XT
t βv + ξT

t fv + wt,v, (4)

where the PSD of wt,v is given by Fk,l and the linear drift dt,v is

modeled by XT
t � [1, t] and βT

v � [mv, bv].

We emphasize two important points that produce big differences
between the model in (4) and a conventional model involving spatial
smoothing by Gaussian kernel (SSK). First note that the activation
amplitude fv in (4) is a parameter we need to estimate ”voxel by
voxel” from collected FMRI data. However, the activation amplitude
in the conventional model is assumed to be a Gaussian point spread
function (PSF) imposing spatial continuity of activations [7]. Based
on Gaussian PSF and under a spatial white noise assumption, [8]
showed that likelihood ratio test leaded to a matched filter involving
SSK. Secondly, the noise wt,v is a spatiotemporally colored process
that is not under a space-time separability assumption, whereas the
noise in the conventional model is under spatial independence and
space-time separability. For temporal noise modeling, temporal AR
processes have been used in the conventional approach.

3. DETECTION STATISTIC

3.1. General Development

The consideration of the spatiotemporal structure of wt,v in the
temporal frequency and spatial wave-number domains simplifies
the discussion. Taking spatiotemporal DFTs in (4) gives us, for
k(= 0, . . . , T − 1) and l(= 0, . . . , M − 1),

ỹk,l = X̃T
k β̃l + ξ̃T

k f̃l + w̃k,l, (5)

where, e.g., ξ̃k denotes the temporal DFT of ξt and f̃l is the spatial
DFT of fv . For large T and M , under spatiotemporal stationarity
and some regularity conditions involving joint cumulants, w̃k,l obeys
central limit theorem (CLT) [9] leading to, for ∀(k, l) �= (0, 0),

1√
TM

w̃k,l ∼ Nc(0, Fk,l) (6)

and w̃0,0 ∼ N (0, TM ·F0,0), where Nc and N are complex and real

Gaussian distributions, respectively. In addition, {w̃k,l}k=0,...,A
l=0,...,B are

jointly Gaussian and independent for any (A, B) such that {1 ≤
A ≤ (T − 1)/2, 0 ≤ B ≤ M − 1; A = 0, 1 ≤ B ≤ (M − 1)/2},
where T and M are assumed odd.

To develop a detection statistic for a voxel location of interest,
we consider a hypothesis testing problem for the whole region of
interest (ROI), namely

H0 : fv = 0 for all v, (7)

H1 : fv �= 0 for some v.

In the temporal frequency and spatial wave-number domains, we
have an equivalent hypothesis testing problem;

H0 : f̃l = 0 for all l, (8)

H1 : f̃l �= 0 for some l,

where H0 states there is no activation in the ROI and H1 states its
alternative. Based on (6) and (8), we construct a likelihood ratio
test (LRT) statistic Λ whose logarithm defining LRT (� 2 log Λ) is
given by

−2 log Λ =

T−1X
k=0

M−1X
l=0

log bF1,k,l − log bF0,k,l (9)

+

T−1X
k=0

M−1X
l=0

|ẽ1,k,l|2
TM · bF1,k,l

− |ẽ0,k,l|2
TM · bF0,k,l

,

where all estimates are MLEs, e.g., bF1,k,l is the MLE of Fk,l under

H1. Residuals ẽk,l are defined as ẽ0,k,l � ỹk,l − X̃T
k
b̃
β0,l under H0

and ẽ1,k,l � ỹk,l − X̃T
k
b̃
β1,l − ξ̃T

k
b̃
fl under H1.

For constructing LRT in (9), we use an approximate likelihood
derived from (6) in the frequency domain. This construction of an
approximate likelihood for a parametric model in the frequency do-
main can work well even for small sample sizes and thus widely
used in times series and econometrics. In practice, the validity of the
approximate likelihood from the frequency domain approach can be
investigated by statistical diagnoses, e.g., QQ-plot.

3.2. Spatial Decomposition

To develop a voxel-wise detection statistic, we manipulate LRT
from (9) in two ways. We firstly have an equivalent expression to
LRT in the space-time domain via Parseval’s relation. We secondly
define LRTv by performing spatial decomposition of the LRT in
the space-time domain, i.e., LRT =

P
v LRTv . It can be shown

that this spatial decomposition of LRT produces the following
spatio-temporal LRT (ST-LRT) in two pieces; a noise piece and
signal piece,

LRTv � LRT N
v + LRT S

v , (10)

where LRT N
v reflects the difference between the estimates of PSD

under H0 and H1. The noise and signal pieces are defined as

LRT N
v � T

“bθ0,0,0 − bθ1,0,0

”
+

T−1X
t=0

`
ε2
0,t,v − ε2

1,t,v

´
,

LRT S
v � sH

y,vsy,v, (11)

and

sy,v
DFT←→ s̃y,l, s̃y,l � S

− 1
2

ξξ,ls̃yξ,l,

where bθj,0,0 is the MLE of θ0,0 (cepstral coefficient at the origin) and
εj,t,v is spatiotemporally whitened data yj,t,v under Hj for j = 0, 1,
i.e.,

εj,t,v � (gj,t,v � �yj,t,v). (12)
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gj,t,v is a spatiotemporal whitening filter that is temporally causal
and yj,t,v is adjusted from yt,v by removing out nuisance signal
component estimate. For the signal piece LRT S

v , s̃yξ,l and Sξξ,l

are defined as

s̃yξ,l � 1

T
·

T−1X
k=0

ỹ∗
1,k,lξ̃1,k,lbF1,k,l

, Sξξ,l � 1

T
·

T−1X
k=0

ξ̃1,k,l · ξ̃H
1,k,lbF1,k,l

,

(13)
where ξ̃1,k,l is adjusted from ξ̃k by removing out nuisance signal
component estimate and is dependent on (k, l) due to the non-
separable nature of noise processes. We have the following relation
between the spatiotemporal whitening filter gt,v and the PSD Fk,l:
Under Hj for j = 0, 1,

gj,t,v
DFT←→ g̃j,k,l, |g̃j,k,l|2 =

1bFj,k,l

, (14)

where gj,t,v is temporally causal. In (13), s̃yξ,l evaluates the cross
correlation between yt,v (data) and ξt,v (temporal response) after the
spatiotemporal whitening with gt,v is done in the frequency domain.
Similarly, Sξξ,l computes the auto-correlation of spatiotemporally
whitened temporal response. Details of the derivation of (10) from
(9) are provided in [6, Chap.3]. If a space-time separability of noise
process is assumed, the signal piece of ST-LRT in (11) reduces to a
closed form in the space-time domain and gt,v is decomposed into
its pure temporal and pure spatial pieces [2].

We here emphasize three significant differences between the
conventional GLM involving SSK (called SSK-GLM in this paper.)
and the developed ST-LRT. Firstly, the spatiotemporal whitening
filter gt,v is based on spatiotemporal correlation without space-time
separability, whereas SSK-GLM is established on the basis of spatial
independence and space-time separability as we outlined in several
places of this paper. Secondly, different whitening filters (g0,t,v and
g1,t,v) are estimated from and applied to data under H0 and H1 for
ST-LRT. However, spatial kernel smoothing with the same FWHM
is performed in SSK-GLM regardless of hypothesis. Finally, it can
be shown that the spatiotemporal whitening filter gt,v is more like a
differentiator that is opposite to a smoother used in SSK-GLM.

3.3. Family-Wise Error Rate Control

By computing ST-LRTs over all voxels in a ROI and thresholding
them with a pre-determined cutoff point, a thresholded detection
statistic called an activation map can be obtained. A threshold is
determined for the purpose of controlling an overall error rate. Since
we usually have many voxels in a ROI, that is a multiple comparison
problem. One widely used measure is family-wise error (FWE) rate
whose definition is given under H0 as follows:

FWE � Pr

 
M[

v=1

{LRTv > γ}
!

= Pr
“
max

v
LRTv > γ

”
, (15)

where threshold γ is determined for a significance level α, typically
0.05 in FMRI. False discovery rate is an alternative choice to FWE.

From (15), we need an approximate distribution of the maximum
of LRTv to determine γ for a given α. If βv (nuisance signal) and
Fk,l (PSD) are known, we have the following asymptotic properties
under H0 that are useful to determine γ:

(P1) ε0,t,v � (g0,t,v � �y0,t,v) is a spatiotemporally white noise
that obeys N (0, 1) for any (t, v),

(P2) LRTu
i.d.∼ LRTv for all u �= v,

(P3) LRTv ∼ χ2
L,

where x
i.d.∼ y means x and y are independently distributed and χ2

L

denotes a chi-square distribution with L degrees of freedom. Proofs
of (P1)-(P3) are given in [6, Chap.3]. Due to (P2)-(P3), threshold γ
can be analytically determined. For a significance level α, we have

γ(α) = Ψ(χ2
L)

−1 ` M
√

1 − α
´
, (16)

where Ψ(χ2
L) denotes the cumulative density function of χ2

L. Thus,
no random field theory (RFT) is required to control FWE rate for
ST-LRT.

4. MODEL SELECTION AND COMPARISON

By means of Akaike information criterion (AIC), we can not only
compare two models with different structures, e.g., ST-LRT model
and SSK-GLM, but also models with the same structure to determine
proper orders, e.g, (L, n, p) in (4) for ST-LRT model. Recall that L
denotes the number of basis functions to model the BOLD response,
thus L is the number of interesting signal parameters. (n, p) contains
the orders for modeling PSD in (3), thus determines the number of
noise parameters. We first consider a model selection for ST-LRT
model to determine (L, n, p), then move the discussion to a model
comparison of ST-LRT model and SSK-GLM. A similar approach
in FMRI can be found in [3].

From the discussion in Section 3, we have the following AIC:

AICL,R �
T−1X
k=0

M−1X
l=0

log bF1,k,l +
|ẽ1,k,l|2

TM · bF1,k,l

+ 2(L + R), (17)

where the first two terms denote the negative approximate likelihood
under H1 as in (9) and the last term including the number of cepstral
coefficients R (� 2np + n + p + 1) means the model complexity.
Minimizing (17) produces the model orders (L, n, p) for the fully
parameterized model in (4). Alternatives to AIC can be Bayesian
information criterion (BIC) and minimum description length (MDL)
that pick smaller models than does AIC.

For model comparison, the same ideas used to construct ST-LRT
is applied to AIC. Applying Parseval’s relation and then performing
spatial decomposition of (17) yield an AIC map for ST-LRT model
given by

AICLRT
v � T ·bθ1,0,0+

T−1X
t=0

(g1,t,v � �e1,t,v)2+
2(L + R)

M
, (18)

where �� denotes spatiotemporal circular convolution and e1,t,v is
the inverse DFT of residual ẽ1,k,l. Here, AICLRT

v represents the
voxel-wise contribution to AIC for the whole ROI.

An AIC map for SSK-GLM can be also built up. It can be shown
[6, Chap.4] that an AIC map for SSK-GLM is given by

AICDLM
v �

T−1X
k=0

log b̌F k −2T θG
0 +

T−1X
t=0

ē2
t,v +

2(L + np)

M
, (19)

where F̌k is pure temporal PSD of assumed noise models and θG
v

is the cepstrum of a Gaussian amplitude kernel KG
v for SSK. The

residual is defined as ēt,v � ȳt,v − X̄T
t
b̄βv − ξ̄T

t
b̄fv , where, e.g., ȳt,v

is the spatially smoothed and temporally filtered yt,v by KG
v and φt,

that is ȳt,v � φt ∗ (KG
v ∗ yt,v). φt can be a temporal whitening

filter or coloring filter. np is the number of parameters for AR-based
noise modeling. For an AR(1) process as in SPM, we have np = 2

and F̌k = σ̌2

|1−ϕ̌e−jωk |2 , where σ̌2 is the noise variance after SSK

and ϕ̌ is an AR(1) coefficient.
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5. APPLICATION TO A HUMAN DATASET

The ST-LRT derived from non-separable space-time noise models is
applied to a sample dataset from AFNI homepage (http://afni.nimh.
nih.gov/afni/). This dataset was collected from an experiment where
a human subject performed the right-hand finger-thumb opposition.
The experiment was done in 3T MRI scanner and the repetition time
is set to 2 seconds. For brevity, we pick a 2D axial slice where
corresponding motor responses are expected. We have T = 99,
M = 63 × 63, and a voxel whose size is 3.125 × 3.125 × 5mm3.
We use a spatial mask to remove signals outside the subject’s brain
and then apply a spatiotemporal taper (Tukey-Hanning window) to
reduce bias caused by edge effects in 3D spectral estimation.

For ST-LRT, Laguerre functions whose orders are up to 3 are
used for the BOLD response modeling [4]. To check the validity of
the approximate likelihood in the frequency domain used to build up
ST-LRT, a statistical diagnosis is done. From [9], if CLT works well

for this dataset, Ik,l/ bFk,l obeys χ2
2/2, where Ik,l is Periodogram.

We have no significant deviation in the QQ-plot of log(Ik,l/ bFk,l)
and a Gumbel distribution (a logarithm of χ2

2/2), showing that the
approximate likelihood behind ST-LRT works well for this AFNI
dataset. For SSK-GLM, the FWHM of Gaussian smoothing kernel
is set to 2.5 times of the voxel size as recommended in SPM. After
SSK, temporal whitening based on AR(1) processes is performed for
each voxel. Then voxel-wise F -statistics are constructed.

For comparing two competing models, two AIC maps, one is
from non-separable ST-LRT model and the other is from SSK-GLM,
are provided on the top of Fig.1. The AIC values of ST-LRT model
are substantially lower than those of SSK-GLM, indicating that the
ST-LRT model is on average closer to the unknown underlying truth
generating the collected dataset than SSK-GLM. On the middle of
Fig.1, two activation maps before thresholding are shown. On the
bottom of Fig.1, two thresholded activation maps where red spots
show activated regions in the brain are given for significance level
0.05. The activation map from ST-LRT shows sharper and more
well-defined activated areas than that from SSK-GLM in the primary
and secondary motor cortex.

6. CONCLUSIONS

We developed a detection statistic for activation from non-separable
space-time noise models, in which spatiotemporal correlation is fully
considered without space-time separability. For implementing the
developed ST-LRT, the parametric cepstrum allowing nearly linear
fitting procedure was used. Applying the ST-LRT to a human dataset
showed its superiority over the conventional GLM involving spatial
smoothing by Gaussian kernel via AIC maps.
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